
Non-local barrier and anisotropy of alpha emissions from oriented 237Np nuclei

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1970 J. Phys. A: Gen. Phys. 3 378

(http://iopscience.iop.org/0022-3689/3/4/008)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/3/4
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

Non-local barrier and anisotropy of alpha emissions from 
oriented 237Np nuclei 

M. L. CHAUDHURY 
Department of Physics and XIathematics, Indian School of Mines, Dhanbad, 
Bihar, India 
MS.  receiced 29th Decembe.; 1969 

Abstract. A formula for the angular distributions of alpha particles from 
oriented nuclei is presented here by assuming the barrier to be the usual anisotropic 
electrostatic potential superimposed by a non-local alpha-nuclear interaction 
potential. A spherically symmetric form of this latter potential was used 
successfully in a previously published work and will now be taken to be axially 
symmetric, described by a deformation parameter € 1 .  For simplicity we shall 
restrict our considerations to spheroidal deformations of the nuclear surface. 
Calculations show that the anisotropy coefficient is positive for either sign of a 
given value of the quadrupole moment Q of the parent nucleus, depending on 
the values of c l .  The significance of this finding in the light of the results of 
experiments on 237Np nuclei is discussed. The  main contribution of this work 
is to show that the observed anisotropy of alpha emissions from oriented 237Np 
nuclei can now be interpreted without difficulty, regardless of the sign of Q of 
this nuclide. 

1. Introduction 
It was suggested by Hill and Wheeler (1953) that, for prolate spheroidal nuclei, 

the electrostatic barrier being thinner and lower at the poles than at the nuclear 
equator, preferential cr-emissions should occur along the nuclear symmetry axis. 
Meanwhile, studies in a-ray spectroscopy (cf. Perlman and Asaro 1954) for very 
heavy elements revealed rotational level structures in the daughter nuclei in accord- 
ance with the Rainwater (1950) and Bohr-Mottelson model (Bohr 1952, Bohr and 
Slottelson 1953) of strongly coupled nucleonic structure of deformed nuclei. Here- 
after the development of cc-decay theories proceeded along these lines in rapidly 
succeeding papers, for example, by Christy (1955), Bohr et al. (1955), Rasmussen 
and Segall (1956), Rose (1957), Froman (1957), Strutinskii (1957) and Rostovskii 
(1961), by taking into account various effects of deformations of the nuclear surface 
as well as of angular momentum. In this early period the discussions on %-decay 
intensities were mainly restricted to the hypothesis of a pure Coulomb potential 
barrier. Although alpha angular distributions are not always explicitly calculated, 
it is found that if the barrier is assumed to be purely electrostatic then the con- 
clusions are in general agreement with the prediction of Hill and Wheeler. 

On the other hand, Mang (1960) and Zeh and Mang (1962) in recent papers 
have treated the cc-decay problem in terms of clustering probability by using an 
angle-dependent shell-model wave function on the nuclear surface. As for the 
potential barrier, the usual Coulomb potential plus an a-nuclear interaction potential 
has been taken. Also, as discussed below, there are reasons to believe that the said 
%-nuclear interaction potential is non-local in character. In  Mang's theory this 
potential has been taken to be static. However, it must be stated that the shell- 
model theory does not indicate anything to support the static potential assumed 
therein. Furthermore, as also mentioned in their latest paper (Poggenburg et al. 
1969), the agreement between the shell-model calculations and the empirical hindrance 
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factors is unsatisfactory for higher %-angular momenta. Hence the need arises 
for reviewing the situation on the basis of a more realistic barrier than either the 
purely electrostatic barrier or a static a-nuclear interaction potential. This is all 
the more important for the present problem of a-angular distributions in view of 
the difficulty that arises in interpreting the results of experiments on 237Np nuclei 
on the basis of the usual barrier hypothesis. 

The measurement of the anisotropy of %-emissions was carried out by Hanauer 
et al. (1961) confirming the results of their previous paper (see, e.g. Dabbs et al. 
1958). In  their experiments 237Np nuclei were oriented through large electric 
quadrupole and magnetic hyperfine couplings in the NpO;+ group of the salt 
NpO,Rb(NO,),. It was found that the a-particles are emitted preferentially at right 
angles to the crystalline c axis. However, the interpretation of the orientation of the 
symmetry axes of the 237Np nuclei relative to this crystal axis depends on the signs 
of the hyperfine coupling constants A and P. Hanauer and co-workers determined 
their signs to be A < 0 and P > 0. Pryce (1959) also in an earlier work had come 
to the same conclusion. This means that the 237Np nuclei were oriented at right angles 
to the crystalline c axis, thereby indicating the preferential a-emissions to be along 
the nuclear angular momentum vector. Eisenstein and Pryce (1955) have shown that, 
if P > 0, then the sign of the electric quadrupole moment Q is negative, i.e. 237Np 
nuclei are oblate. Thus, according to this interpretation, the a-emissions in the above 
experiments were actually observed to be more intense at the ‘flat’ surfaces than at 
the ‘tips’ of the nuclei, in contradiction to the expectation from the pure Coulomb 
barrier hypothesis. 

In  view of this difficulty, Hanauer and co-workers assumed a positive value for 
Q in 237Np nuclei and, in order to reconcile this with the finding that P > 0, they 
assumed for the electronic structure of the neptunyl ions a model of bonding which is 
different from that suggested by Bleaney e t  al. (1954). At present there is perhaps 
no other evidence to settle this point in favour of either opinion, except that a positive 
value of Q for 237Np nuclei is necessary if the barrier is assumed to be purely Cou- 
lombic. 

On the other hand, the reasons for considering that a purely electrostatic barrier 
in a-decay theory is an oversimplification and should be modified by an appropriate 
superimposed a-nuclear potential, have been discussed earlier (Chaudhury 1952). It 
wasthen proposed (Chaudhury 1960) that the said a-nuclear interaction potentialshould 
be non-local, in view of the observed momentum dependence of the nuclear force as 
evidenced in different experiments (see, e.g. Igo and Thaler 1957, Weisskopf 1957 and 
Wilson and Sampson 1965). Question might arise as to whether or not the effects of 
non-locality on a-decay intensities are negligible. On the contrary it is found 
(Chaudhury 1963) that if the form of non-locality for the %-nuclear potential is 
taken to be the same as that assumed for the nucleon-nuclear interaction potential 
(cf., for example, Frahn and Lemmer 1957, Lemmer and Green 1960) then it leads 
to rather too large a change in the barrier penetration factor. It thus appears that 
the momentum dependence associated with the r-nuclear potential is somewhat 
smaller than envisaged in the effective-mass approximation in the nucleon-nuclear 
potential suggested by Frahn. This was also noted by other authors (see, e.g. Preston 
1962). From these considerations a simpler form of non-local a-nuclear potential, 
within the framework of the optical model, was defined (Chaudhury 1966-to be 
referred to as I) in terms of which relative intensities of a-spectra, particularly those 
for the odd-parity transitions (not previously explained) in spherical nuclei in the 

A4 



3 80 114. L. Clzaudhu~y 

range 83 < Z < 92 and neutron number AV < 138, were discussed. Apart from the 
simplicity of the treatment, it is clearly shown that, for the spherical nuclei, the data 
for the relative intensities can be very well represented in this way, agreements being 
in most cases within 25;/, of the observed values. 

Corresponding results with a pure Coulomb potential or the said static potential 
show much wider discrepancies. 

In  view of this success and recalling the somewhat unclear experimental situation, 
we intend to discuss here the problem of a-angular distributions on the basis of the 
modified barrier mentioned above. Now the anisotropy of x emissions may be partly 
determined by an angle-dependent x-wave function on the nuclear surface. It is 
very improbable that the u.-mave function on the surface is so distorted as to overcome 
the effects of the barrier. I t  is therefore expected that barrier effects will be the 
dominating influence in determining the character of the anisotropy of cc-emissions 
from oriented nuclei. 

For simplicity we shall restrict our considerations to spheroidal shapes of the 
nuclear surface determined by the quadrupole deformation parameter p 2 , 0 .  T o  be 
consistent, the isotropic non-local potential defined in the earlier paper I will now be 
extended and described by a deformation parameter, say e l .  Since the potential itself 
is momentum dependent, the parameter c l  may take different values for different 
cc-angular momenta 1. Since in the present problem we shall be mainly concerned 
with the ground state transitions, the subscript of E will be taken as 1 = 0. In  4 2, 
the relevant wave equation is set up on the basis of the above assumptions. This is 
then solved by following a method due to Christy, under the boundary conditions 
that the cc-wave function #,(e, q )  on the nuclear surface is represented as an expansion 
in spherical harmonics. In the next section, the desired formula for the anisotropy 
coefficient is obtained. 

Xow in view of the differences of opinion about the sign of Q for 237Np nuclei, the 
formula for the a-anisotropy cannot be compared quantitatively with the experimental 
results. Calculations are therefore made for both the positive and negative signs of a 
probable value of Q for 237Np nuclei. &o, since the non-local deformation para- 
meter eo is unknown, a plausible range of values of eo  is chosen for each set of calcula- 
tions. As we are mainly interested in the sign of the anisotropy coefficient, it is 
sufficient to retain in the formula only the basic term in the series of t,bo(B, rp), repre- 
senting the cc-wave function on the nuclear surface. It will, however, be shown that 
our conclusions are unaffected if the quadrupole terms of #o(6, q )  are also included. 
In  the last section a brief discussion and conclusions are given. 

It will be seen from the tabulated results that the experiments of Hanauer et al. 
(1961) can now be interpreted without difficulty and regardless of the sign of Q of 
the 237Np nuclei. Secondly, indications about the limiting values of the parameter E,, 

are available. This information will be useful for extending the present considerations 
to the problem of intensities of r-spectra for deformed nuclei. 

2. Wave equation 
2.1. Isotropic barrier 

isotropic barrier 
From what has been said above, if one starts from the Schrodinger equation for an 
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then, for the partial x-wave of angular momentum I, 

one obtains the equation 

U [ )  + (E ,  -zio(~)}U, = x, (Y,  Y”) U,(Y”) dY” (2) 
Z(Z+ 1) 

where uo = 2(2-2)e2/r (2 being the charge number of the parent nucleus), e is 
electronic charge, r”( = Y”,  O ” ,  p”) represents some position of the cc-particle other 
than that denoted by r( = Y, 8, ‘p) in the laboratory system of coordinates with the 
origin at the centre of mass of the two-body system, and x, is the angle-independent 
part of the interaction kernel J( r,  r”) .  

For the nucleon-nuclear potential, the form of J( r ,  r”) ,  was suggested by Frahn 
and Lemmer (1957) as 

(2.1) 

-4s already mentioned the same form is not applicable for the E-nuclear potential. 
Hence J(r ,  r”) was defined (cf. I) to suit cc-decay data as 

J ( r ,  r”)  = V(Y) a b ( r -  r ” ) .  ( 3 )  
In  equation (3) the static part V(Y) will be taken as before to be the real part of the 
optical model potential and 6, is represented by a Gaussian function 
~ - ~ / ~ b - ~  exp((r- ~ ” ) ~ / b ~ } ,  b being the range of non-locality. I t  must be stated that 
the optical parameters are not unique (cf., for example, Wilson and Sampson 1965). 
Also, scattering and decay mechanisms are of course not identical. Thus for lack of 
information one has to choose any one of the sets of parameters indicated from other 
sources. Since in I the Igo potential was found suitable, the same will be used here. 

Now by a Taylor expansion of U,(Y”) around Y, the integral in equation (2) gives 
the non-local energy as a series expansion 

U~(Y) 
(Y” - Y)2 

x!(Y, Y ” )  dr” + U,’(Y) (Y”  - Y )  x ~ ( Y ,  Y”) dY” + U,”(Y) ~ x,(r, Y”) dp“ + . . . . 
(3.1) 

i i 1 2  

In I for simplicity we retained only the first term in the series (3.1). In  this 
approximation one would probably prefer to call the potential an I-dependent one 
rather than a full non-local potential. However, in the present discussion we remove 
this approximation because higher-order terms will now arise from the quadrupole 
moment of the nuclear surface. Integrating equation (3.1) and retaining terms up to 
the order b2, it can easily be shown that the non-local interaction energy in general 
takes the form 

Z‘,(n)(Y) = V(r) P,(”)(Y) ( 4 )  

where the purely non-local part of order n (shown as superscript) is given by 
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where x = (Y-Ri) /b ,  R, is the ‘inner turning point’ and 

g(O)(x) = +(l + Z ~ - l : ~ j  e - r2  dz) 

After simplification, equation (2) can be written from equations (3) and (4.1) as 

1 “i U,l;”(P) - --- UZ(Y) + (E, -Uo(?,) - z p ( Y ) }  
1(1+ 1) 

2P YZ 

where primes refer to differentiations with respect to Y. Now the right-hand side of ( 5 )  
is a small perturbation, as g( l ) ( x )  vanishes except at the immediate neighbourhood of 
Ri, and will be ignored. 

2.2. Anisotmpic bawiey 
Now u0(y) and v , ( ~ ) ( Y )  in equation ( 5 )  are to be replaced by the corresponding 

angle-dependent potentials U (  r’)  and cl(%)( r ‘ )  and also will be referred to the body-fixed 
system of coordinates Y’( = Y, O ’ ,  cp’), with origin at the same centre of mass. As already 
mentioned, if we confine our attention to spheroidal shapes of the nuclear surface, then 

2 

ZL2(Y) = ,UO(If)(+) 

and Rc( = yo x ( A  - 4)lI3 x 

a way similar to that suggested by Gottfried (1956) for a static potential as 

cm) is the radius of a hypothetical nuclear sphere. 
Now an axially symmetric a-nuclear potential T I , ( ~ ) ( Y ’ )  may be approximated in 

7 p (  r ’ )  = 7 p ( P )  - E ( 1 - p  V’(Y) + Y V(Y) p,(n)’(r)} 
x Y2,0(O’) + (518.x) E ~ ’ { V P , ( ~ )  V’(Y) + P V(Y) P ~ ( ~ ) ’ ( Y ) )  (7) 

where 2 = (c l  + (5/47?)112 el2) .  

ponding to equation (1) is 
Collecting the terms for the potentials the three-dimensional equation corres- 

where 

(8.1) 
b2P Hint = zi(r’)+z’L(o)(r’)+-uo(2)(r’) {u(r ’ )  + U ~ ( ~ ) ( ~ ’ ) - - E , } .  
2?V 

2.3. Solutions 
In  this section we find the solution of equation (8) by following, as mentioned in 

the Introduction, a method due to Christy and adapted to the present problem. The  
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point of difference is that, in the case of a purely electrostatic barrier-for which the 
method has been discussed in detail by Froman, there is no actual inner turning point 
because the function K2( = U (  r’) - E )  in his paper has no discontinuity near the nuclear 
surface. On the other hand the existence of such a discontinuity for the function F ,  
(corresponding to K in equation (9) below-cf. equation (19)) necessitates some 
restriction to the lower limits of the integrals in the extremal problem: 

i:’ K d s  = 1: K dr-  J r p ’ K d i +  ... = minimum (9) 
RC 

where P’ is a point on the spheroidal nuclear surface I?(@), P is defined to be somewhere 
within the barrier region and R, is some average of R(0’). However, it is evident that, 
for 8’ < 55”,  R, is less than Rp, .  For an electrostatic barrier this presents no difficulty 
because K 2  remains positive throughout except for Y > R,, the latter being the outer 
turning point = 2(x- 2)e2/E).  

On the other hand, if a-nuclear potential is superimposed on the Coulomb poten- 
tial, there is an ‘inner turning point’ R,(B’) (in three-dimensions), where the function 
F L 2  (cf. equation (19) below) turns from a positive value outside to a negative value 
inside it. Clearly then the integration limit Rc in equation (9) should nowhere be less 
than RI(@), otherwise F12 will be negative which is not allowed. In  contrast with 
R(8’) ( =Rc(l + /32,0 Y2,,)) which usually describes the nuclear surface, now Rl(8’) will 
depend on both p2 , and the non-locality parameter c l ,  and, by analogy, we can write 

R,(0’) = R(l + Z Y2,0(0’)}. 

Rite’) = R,((1 - ~ U ~ ) + ~ U ~ I ) ~ , ~ ( C O S  0’)) 

(10) 

(10.1) 

Now it can be easily shown that 

where I?( = Rl(O’ = cos -1(+)112) is in general different from Re (cf. below equation 
(6.1) and occurring in equation (9)) and D is the eccentricity. 

In  the present context the lower limit in the extremal problem (9) should nowhere 
be less than R,(8’) and hence should be chosen to be at least equal to (or greater than) 
the turning point R,(8’) for all 8’. This condition is obviously satisfied by the auxiliary 
sphere of radius Ra (cf. equation (10.1)) which is also the semi-major axis of the 
generating ellipse for the surface R,(0’). 

The radial function for the a-particle is denoted so far by only one quantum 
number, 1. Now, for deformed nuclei, this will depend on other quantum numbers 
as well, specifying the intrinsic motions of the nucleons and the rotational and vibra- 
tional motions of the nucleus as a whole. The subscripts i and f will refer respectively 
to initial and final nuclei. 

If we write out explicitly the products v , ( ~ ) (  r’)  x U (  r ’ ) ,  ZI,(~)( r’) x 7 ; , ( O ) (  r’)  and 
~ , ( ~ ) ( r ’ )  x E ,  occurring in equation (8,1), and retain terms up to the order c12  and b2, 
then, after simplification, one finds the approximate solution of equation (8) as 

with the boundary condition that the x-wave function $0(0‘, cp’) on the nuclear surface 
is 

(11.1) 
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where the modified matrix 

q,<;(al, ( 1 )  = s- @l,,v  exp[ - ltl + a, %0(4}1@l,v  sin 0 dB (12)  
0 

with I, m, v being the algha-angular momentum and its projections; j ,  M and K are 
the total angular momentum and its projections respectively, for the nucleus in the 
two systems of coordinates. Also 

a, = ( ( 5 / 4 ~ ) ~ ’ ~  4, + ( J 2  - S , ) }  (12.1) 

where 

Ac, = 

s2 = 

ll = 

where 
X =  

K ,  = 

AKl = 

AK, = 

Now V I  occurring 

(12.3) 

(12.5) 

(b”/Zrzz”)r V(r) E l p 0 ( 2 ) ’ ( Y ) ( U 0  - c/o) - E l ) .  (12.8) 

in equation (10) is obtained by solving equation ( 5 )  by the 
well-known WKB method as 

where 
yo = (Z-2)e2/E,1’2 

r o = J  -- dr . (13.1) 

We can now transform the solution B,  , , , , K r ( ~ )  into the corresponding a-wave function 
S,,m,k;(~) in the laboratory system of coordinates by using the rotation matrix as 

R o  (1 + (pb2/2ti2)(g‘O’ -po‘2’) V(r)) 
11, .“Uo -. V(/’(F)g‘O’ - az., - El)1’2 

il 

where for the CIebsch-Gordan addition coefficient we have used the notation follow- 
ing Condon and Shortley (1935). 
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3. Angular distributions 
The probability per second per unit solid angle in the space-fixed system of 

coordinates that an a-particle leaks out in the direction (e ,  rp) leaving the daughter 
nucleus in the state (j,, K,) is obtained by summing over &l, the following expressions: 

W(Q = ( 1 / 2 x ) ( 2 ~ ,  p)ll2 C I 2 (jf, I ;  JG, A~l- -Wjl ,  ~ ) ~ ~ , , , 3 ~ , )  O~,,(~)I:,~ (15) 
Mr 1 

where 0, , , (0)  is the &dependent part of the spherical harmonic Y,,,(O, y). On using 
equations (14) and (13) in equation (15) and then simplifying the products of three 
Clebsch-Gordan coefficients in terms of the Racah associated coefficients and expand- 
ing the product of two spherical harmonics in terms of spherical harmonics, equa- 
tion (15) is simplified. The resulting expression is then averaged with respect to the 
initial Ml values. Now lWl is involved in the Clebsch-Gordan coefficient only, and 
also recall that the vector addition coefficient is always equal to 1 for L = 0, and we 
take the average for L = 2, with respect to the initial distribution of lil, values, of 
the expression 

(16) 

1 

Ji 
f = (.Vi2 - $ji(j, + 1) ) (16.1) 

which measures the nuclear polarization and vanishes for non-polarized parent nuclei. 
Now considering here only the ground state transitions, and on using equation (16), 
we can write equation (15) finally as 

W(6) = bVO{l +JAz(ji, jf) P,(cos 6) + ...} (1'7) 
where J is the average off,  WO is the isotropic angular distribution of the cl-particles 
and the desired formula for the anisotropy coefficient A,(ji, j , )  is obtained as: 

6(5)1~2j12(2j1 + 1)l F(j,) = _ _ _ _ - ~ -  --- 
{(2j, - 1)2j,(2j1 + 2)(2j1 + 3))lI2 

I j i ( Z +  1) -y + 1) 
y1,1, = ( - ) ( Z  - I +  y 2 z +  1)(21' + 1)}1/2 cos --___-_-- 

(18.1) 

(18.2) 

(15.3) 

and q1 
Biedenharn et al .  1952). 

is given by equation (12) and W(l,ji, Zt,jl;jf, 2) is the Racah coefficient (cf. 

4. Results 
We now apply equation (18) to the 237Np nuclei. To evaluate the anisotropy 

coefficient A, we take advantage of the use of a computer; the integrals involved are 
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worked out by using Simpson’s rule in a slightly different form: 

J - = 4 d ( ( f o  + 2-jf2 n )  + 4 ( j ,  + . . . +j2 - + 2(j2 + . . . +.f2 - 2)) 

where d is the strip width. We have taken the number of strips as 100 for the entire 
range of the integral, whereas, for calculating g(O)(z), g(2)(z) (cf. equation (4.2)), one 
obtains sufficiently accurate values with only 60 strips. 

Now we calculate the values of R,, l? and CT involved in the formula for A,. 
Referring to equation (lo), since the effective deformation parameter & depends on 
both /32,0 and it would not be surprising if, for some values of and for a given 
p2,0, the barrier becomes spherical although /32,0 # 0. The  value of R,(O) is obtained 
by solving by the iterative method the equation 

where Hint is given in equation (8). Now we give in table 1 the calculated values of 
the semi-major and semi-minor axes (i.e. R, and R,,,) and J? of the nuclear spheroid 
for different values of eo. 

Table 1. 

Non-local 
Parent Empirical parameter 

0.150 
0425 
0.050 

0.24 0.000 
-0.050 

2”7NP -0.125 
-0.150 

nucleus P 2 , O  EO 

0.125 
0.050 

- 0.24 0.000 
-0.050 
-0425 

9.032 8.987 

8.981 9.015 
8.957 9-028 
8.939 9.039 
8.904 9.054 
8.894 9.060 

9.019 8.995 

9.114 8.952 
9.077 8.967 
9.053 8.980 
9.029 8,991 
8.995 9.007 

Effective 
Eccentricity deformation - 

U 

0.099 0.005 
0.074 0.003 
0.087 -0.002 
0.125 -0.004 
0.149 - 0.006 
0.181 -0 009 
0.191 -0.010 

0.188 0.019 
0.155 0.01 3 
0.1 27 0.009 
0.091 0.005 
0.050 -0.001 

Calculations are performed with range of non-locality b = 0.7 fm and x-energy equal to 
4.787 &lev  for the ground-state transitions in 23’Np nuclei. The mean radius 
fi( = Rl{cos-l(~)l’z}) is found to  be the same for all the cases and is equal to 9.003 x cm. 

As shown in table 1, the effective deformation 2, is quite small compared with 
/32,0. It is therefore evident that R,  occurring in equation (6.1) (and also in the relation 
preceding equation (10)) is smaller than the mean radius I?( = R,(cos-I in 
equation (10)) for a given semi-major axis of the nuclear spheroid. 

Next we calculate the anisotropy coefficient. As already stated, the sign of Q for 
237Np being unknown, calculations are given for both positive and negative signs of Q. 
The  value of /32,0 is chosen from a reference to the values given by Bell and co-workers 
(1960) for the region with mass number A > 225. In  the relation 
R, = ro(A -4)ll3 x cm, it is possible, as already mentioned, to take y o  = 1.20. 
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Somewhat higher values of r ,  are also admissible. Since the non-local deformation 
parameter is unknown, a plausible range of values is chosen. 

Table 2. 

Non-local lo a0 q 2 . 0  A 2 (" 2 ,  ") 2 

Parent p2 .o deforma- Equation Equation q o . o  Equation Equation 
nucleus tion (12.5) (12.1) (12) (18) 

€0 

237NP 

0.150 0.103 -1.440 1.255 0.900 1.53 
0.125 0.072 -1.087 1.136 0.611 1.17 
0.050 0.023 0,061 1.000 -0.027 -0.06 

0.24 0.000 0.035 0.497 1.024 -0.210 -0.45 
-0.050 0.079 0'760 1.055 -0,316 -0.66 
-0425 0466 0.799 1.060 -0.331 -0.69 
-0.150 0,183 0.873 1.072 -0,361 -0.74 

0.125 0,095 -2.210 1.710 1,833 2.13 
0.050 0,028 -1.228 1.178 0,719 1.33 

-0.24 0.000 0.010 -0.601 1.039 0.300 0.64 
-0.050 0,033 -0.219 1.005 0.101 0.24 
-0.125 0.027 -0.037 1.000 0.017 0.04 
-0.250 0.138 0437 1.000 -0.060 -0.14 

-0.20 -0,250 0.151 0.202 1.000 -0,088 -0.20 

By actual calculation it is found that 5 ,  and a;  involved in q l ,o  are not appreciably 
different from lo and a ,  respectively, unless 1 > 4. In  table 2, for calculating both 
q2,, and qo ,o  it is therefore sufficient to take I = 0 for both 5, and a,. Also, for the 
even-parity transitions, v = 0, and the notation is simplified by dropping it. 

5. Discussion 
Our expression for the matrix element (cf. equation (12)) is quite different from that 

obtained earlier on the assumption of apurely electrostatic barrier. The  matrix q,,';. is 
now a function of the Z-dependent quantities C l  and a,. It is also remarkable that the 
sign of the exponent in equation (12) now becomes negative. It may be seen from 
table 2 that, for positive values of p2,0, the non-local parameter E, > 0.054 if A2 is to 
be positive. On the other hand, ,for negative Q also, and over a wide range of values of 
E,, the anisotropy coefficient remains positive, in contrast with the earlier expectation 
on the hypothesis of the electrostatic barrier. This is, however, not surprising. Qualita- 
tively it may be seen that the thinning out or lowering of the electrostatic barrier at 
the tips of the oblate nucleus would be more than compensated by a corresponding 
decrease in the attractive %-nuclear interaction part of the barrier, because, the latter 
having a negative exponent in the form factor, has a much steeper gradient than the 
l / r  variation of the isotropic electrostatic potential. 

It is, however, necessary to mention in this connection that the said compensation 
of the electrostatic barrier by the attractive a-nuclear interaction potential may not 
be always complete, since what we have stated above relates only to the spherically 
symmetric components of the two potentials comprising the barrier. In  addition, 
each part has terms due to spherical asymmetry of the nuclear surface, determined by 
the charge deformation parameter p2,0 on one hand and by the non-locality 
parameter E, on the other. The  relative signs of p2,0 and are also very important 
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Hence the resultant shape of the barrier will be determined by a number of factors 
and the sign of the anisotropy coefficient will be known only by actual calculations. 
As can be seen from the trend of values of A, given in table 2, for oblate nuclei, the 
sign of A, may as well be negative only if e o  would obtain quite large negative values, 
i.e. considerably less than - 0.125. 

Before concluding, a few words about the coefficient in the expansion of i,bo(B, cp) 
(cf. equation (1 1.1)) are necessary. Some authors, for example Froman, Strutinskii, 
and Rostovskii, assumed a constant a-wave function on the nuclear surface, i.e., 
h,.,, = 0 for 1' # 0. On the other hand, an angle-dependent x-wave function on the 
nuclear surface has been taken by Mang and others. So far as the a-angular distribu- 
tions are concerned, the values of the coefficients h2,v are expected to be relatively small 
compared with the basic terms ho ,o  in $o(B,  cp). If it were not so, the effects of angle 
dependence would either reduce the anisotropy to an insignificant value or would 
predominate over the effects of the barrier, thus giving a negative value for the 
anisotropy coefficient in the case of prolate nuclei. Either possibility is contrary to 
the experimental findings. Hence, the inclusion in our calculations of some plausible 
values of the quadrupole terms of i,bo(B, 'p) should not affect our results appreciably. 

6. Conclusions 
From the present discussion one is led to conclude as follows. Not only for the 

prolate but also foy the oblate nuclei, a-emissions should occur preferentially along the 
nuclear symmetry axis. This conclusion is of course based on the presumption that, 
if Q is positive, e o  should be greater than 0.054 and, if Q is negative, then eo must not 
be less than -0.150. These limits in the values of eo  are quite reasonable. As can 
be seen from table 2, with a positive ,82,0, if eo is less than 0.05, then the anisotropy 
coefficient becomes negative, which is contradicted by the experimental results. On 
the other hand for oblate nuclei, values of eo that would give a negatice value of A,, 
such that it is of the same order as observed for 237Np nuclei (i.e. W(B)/Wo = 1.1 at 
least), would require that eo is less than -0.25. Such a large value of e l  for 1 = 0 
seems to be very improbable. 

The main contribution of the present work is that the experiments of Hanauer 
and co-workers can now be understood without difficulty regardless of the sign of Q,  
Furthermore if Q is positive we obtain that the non-local parameter e o  should have a 
value in the range from 0.054 to 0,060 to be consistent with the measured anisotropy 
coefficient. 

In  applying the present considerations about the barrier to the problem of hind- 
rance factors of x-transitions in deformed nuclei in the range 92 < 2 < 100 which 
are known to be prolate, this indication about the value of eo will be useful. 

Finally, it may be pointed out that if the anisotropy coefficient is measured for 
some E-active nuclei for which Q is indicated to be negative (e.g. 227Ac nuclei) the 
result should be quite significant. As our present considerations show that, in all 
probability, A, should be positive for oblate nuclei also, in contrast with the expecta- 
tion from the hypothesis of a purely electrostatic barrier, it is expected that the 
experiments on 227Ac nuclei will provide conclusive evidence regarding the nature of 
the potential barrier in a-decay theory. 
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